Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 63(3): 196-201, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27316666

RESUMO

UNLABELLED: This research aimed to isolate ß-glycosidase-producing endophytic fungus in Panax ginseng to achieve biotransformation of ginsenoside Rb1 to ginsenoside C-K. Of these 15 ß-glucosidase-producing endophytic fungus isolated from ginseng roots, a ß-glucosidase-producing endophytic fungi GE 17-18 could hydrolyse major ginsenosides Rb1 to minor ginsenoside C-K with metabolic pathways: ginsenoside Rb1→ginsenoside Rd→ginsenoside F2→ginsenoside C-K. Phylogenetic analysis of ITS gene sequences indicated that the strain GE 17-18 belongs to the genus Arthrinium and is most closely related to Arthrinium sp. HQ832803.1. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to provide information of cultivable ß-glycosidase-producing Endophytic fungus in Panax ginseng. The strain GE 17-18 has potential to be applied on the preparation for minor ginsenoside C-K in pharmaceutical industry.


Assuntos
Biotransformação/fisiologia , Ginsenosídeos/metabolismo , Panax/microbiologia , Xylariales/metabolismo , beta-Glucosidase/metabolismo , Hidrólise , Filogenia , Xylariales/isolamento & purificação
2.
Lett Appl Microbiol ; 42(5): 495-500, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16620209

RESUMO

AIMS: To study the effect of co-contaminants (phenol) on the biodegradation of pyridine by freely suspended and calcium alginate immobilized bacteria. METHODS AND RESULTS: Varying concentrations of phenol were added to free and calcium alginate immobilized Pseudomonas putida MK1 (KCTC 12283) to examine the effect of this pollutant on pyridine degradation. When the concentration of phenol reached 0.38 g l(-1), pyridine degradation by freely suspended bacteria was inhibited. The increased inhibition with the higher phenol levels was apparent in increased lag times. Pyridine degradation was essentially completely inhibited at 0.5 g l(-1) phenol. However, immobilized cells showed tolerance against 0.5 g l(-1) phenol and pyridine degradation by immobilized cell could be achieved. CONCLUSIONS: This works shows that calcium alginate immobilization of microbial cells can effectively increase the tolerance of P. putida MK1 to phenol and results in increased degradation of pyridine. SIGNIFICANCE AND IMPACT OF THE STUDY: Treatment of wastewater stream can be negatively affected by the presence of co-pollutants. This work demonstrates the potential of calcium alginate immobilization of microbes to protect cells against compound toxicity resulting in an increase in pollutant degradation.


Assuntos
Fenol/farmacologia , Pseudomonas putida/metabolismo , Piridinas/metabolismo , Antibacterianos/farmacologia , Biodegradação Ambiental , Células Imobilizadas/metabolismo , Fermentação , Pseudomonas putida/efeitos dos fármacos , Microbiologia da Água , Purificação da Água/métodos
3.
Chemosphere ; 58(3): 373-7, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15581940

RESUMO

Groundwater, used in this study, contaminated predominantly with aromatic compounds, was biologically treated in a fluidized-bed reactor (FBR) with immobilized cells. The aromatics were completely decomposed, while cis-1,2-dichloroethylene (cis-DCE) and trichloroethylene (TCE) were decomposed only approximately 20% and 5%, respectively. In these studies a significant improvement of the decomposition efficiency for chlorinated ethylenes was achieved by utilizing cometabolism. Methanol (MeOH) and toluene were used as the substrate in the case of one-stage reactor (Single Reactor). MeOH (187 mg l(-1)) increased the decomposition efficiency up to 40% and 60% for cis-DCE and TCE, respectively, while toluene (20 mg l(-1)) increased the decomposition efficiency of cis-DCE to 92% and the decomposition efficiency of TCE to 76%. In the case of two-stage reactor system (Reactor 1 and Reactor 2), MeOH and methane (CH4) were used as the substrate. In this system, cells grown on MeOH or CH4 in the Reactor 1 were continuously fed into Reactor 2 and groundwater was fed into Reactor 2 only. When MeOH (384 mg l(-1) d(-1)) was used as substrate the decomposition efficiency of cis-DCE and TCE were 60% and 70%, respectively. Similar decomposition efficiency was observed for a small amount of CH4 (19.3 mg l(-1) d(-1)).


Assuntos
Reatores Biológicos , Dicloroetilenos/metabolismo , Solventes/metabolismo , Tricloroetileno/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Pintura , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA